Dynamic aspects of cerium dioxide sintering: HT-ESEM study of grain growth and pore elimination
نویسندگان
چکیده
Graphical abstract summary: Sintering of CeO 2 is studied by in situ high temperature scanning environmental microscopy (HT-ESEM) at T=1400°C. The morphological modifications of a single grains population are recorded for 6 hours. Kinetic parameters such as grain boundary velocities are extracted from the obtained image series. An intragranular surface pore elimination process is observed. ABSTRACT Sintering of CeO 2 is studied in situ by high temperature scanning environmental microscopy (HT-ESEM) at T=1400°C. The morphological modifications of a single grains population are recorded for 6 hours. Kinetic parameters are extracted from image series. The local grain growth determined from the single population studied in situ is compared to the general grain growth obtained by classical ex situ technique. Using HT-ESEM for sintering study is validated. The grain boundary velocities range between 0 and 5 µm.h-1 , with a mean value of about 1 µm.h-1. The migration of the intragranular surface pores is described. Their velocities range between 0.4 and 1.2 µm.h-1 and depend on pore diameters: the smaller the pore, the faster the pore velocity. The time required to fill a pore that arises at the sample surface are determined as a function of pore diameter. The time for pore elimination dependence with the pore diameters is also established.
منابع مشابه
Improvement of ionic conductivity of gadolinium doped ceria electrolyte with nano CuO sintering aid
Gadanium doped cerium oxide ceramic (GDC) is widely used as solid electrolytes in solid oxide fuel cells because of its high oxygen ion conductivity. In this study, the effect of addition of nano CuO as a sintering aid on the properties of GDC electrolyte were investigated. For this purpose, 0.2, 0.5, and 1% mole of nano Cuo was added to GDC ceramics, which was synthesized by the solid-state me...
متن کاملComparison of Creep Behavior in Alumina Based Ceramics Densified by Spark Plasma Sintering and Hot Pressing
Spark plasma sintering (SPS) method, as plasma activated sintering, is a method applicable for rapid sintering of metals and ceramics. Owing to the advantage of rapid heating, the alumina ceramics obtained by SPS have a grain size and density comparable to those of hot pressed ones. The increase of densification rate may be related to some difference in ion transport characteristics. This study...
متن کاملFriction stir welding of Al-Al2O3 nanocomposite with bimodal size of alumina reinforcement produced by spark plasma sintering
Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of th...
متن کاملGrain growth kinetic of spark plasma sintered magnesia
In this research, the densification of magnesia nanopowder with a mean particle size of about 100 nm was investigated by spark plasma sintering undera pressures of 80 MPa and at temperature range from 1000 °C to 1400 °C and a heating rate of 50 °C/min for 20 minutes. The density of the samples slowly increased with increasing sintering temperatures to 1200 °C. Afterwards, with more increasing o...
متن کاملFriction stir welding of Al-Al2O3 nanocomposite with bimodal size of alumina reinforcement produced by spark plasma sintering
Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011